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Abstract: In technical sports such as swimming or soccer video-based technique analysis is common 8 

practice, but in cycling disciplines such as cyclocross, road cycling or cross-country mountain biking 9 

it is far less common. In swimming the analysis is centered around the motion of the human body 10 

but cycling analysis should be more centered about riding lines and behavior. This paper presents 11 

an end-to-end solution to detect riders, collect metadata and analyze behaviors within a fenced area 12 

on a static camera video feed. The fence is a user-defined rectangular area (i.e. bounding box) on the 13 

video footage in which ride line analysis will be performed. First the riders are identified and 14 

tracked by an Alphapose skeleton detector and a spatiotemporally aware pose tracker. For each 15 

pose, rider modus (e.g. sitting or standing) and team jersey recognition is captured as extra meta- 16 

information. Finally, a post-processor analyses the riding lines and summarizes the metadata for all 17 

the riders that went through the defined fence on the video feed. This information can provide in- 18 

teresting insights in line choices based on the time riders spend in the fence with respect to the line 19 

that was taken and can be very valuable for performance analysis, storytelling and automatic sum- 20 

marization. 21 
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 23 

1. Introduction 24 

In some sports such as cross-country mountain biking, marathon running or motor 25 

sports the race is often won or lost on a specific part of the racecourse. In Formula 1 rac- 26 

ing, a prime example of a sport that is almost synonymous with advanced engineering 27 

and extensive data analysis, these sector times are available for the entire race lap. This 28 

information is available in real time and gives fans, race teams and commentators great 29 

insights in strengths/weaknesses, race tactics or vehicle capabilities of the riders that are 30 

on the track. Albeit lap timings in sport events are already very valuable and interesting 31 

it still provides only one part of global sector analysis. It is very good at illustrating who 32 

needed the least time to go from point A to point B. However, it is not only interesting to 33 

study how much time was needed, but also the path they followed and how exactly they 34 

went from point A to point B in a certain amount of time. Rather than just the raw tim- 35 

ings, this extra meta-information might even help to understand why one athlete went 36 

faster than another. In this paper we will present a video-based approach providing an 37 

objective, data driven answer on the “why” part of the sector data analysis question. The 38 

remainder of this paper is organized as follows: in the related work section we will dis- 39 

cuss relevant related work on sector timing and video based ride performance analysis; 40 

under methodology we will further elaborate on the video processing pipeline and the 41 

fencing rideline track data post processing; next, the results section will discuss some ex- 42 

periments we performed with the video pipeline and will point out interesting analysis 43 

use cases and visualizations of the produced rideline data; in the final section we will 44 
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briefly summarize our main findings and contributions and point out some future work 45 

that is required to fine-tune the processing pipeline. 46 

2. Related work 47 

To answer the first part (i.e., the timing aspect) of the sector analysis question, several 48 

approaches have been suggested in literature. Sector timing is often performed by some 49 

kind of wireless communication protocol. Athletes or objects wearing an active or passive 50 

tag pass through a checkpoint which acts as a receiver or senses the tags at the checkpoint. 51 

Ultra-high-frequency RFID is one of the more popular technologies to use in sports such 52 

as mountain biking, running, skiing and road cycling or cyclocross. Kolaja and Ehlerova 53 

[1] performed a field study to test this technology in various sports and under various 54 

circumstances and found that this technology provides satisfactory results to accurately 55 

record checkpoint crossings. They also proposed an architecture with a backend database 56 

that (post)processes the raw data into actual checkpoint crossing timings. The big ad- 57 

vantage of this technology is its reasonable cost and resource effectiveness and its relative 58 

easiness to set-up [2]. Another technology that can be used for the gate crossing problem 59 

is the Bluetooth Low Energy technology (BLE). Sun et al. [3] studied the accuracy of this 60 

technology for gate crossing. They used a high-speed camera to quantify the accuracy of 61 

the BLE technology in different running scenarios (BLE tags worn at different locations 62 

and emitting at different signal strengths) and found that the timing error is always less 63 

than 156 milliseconds. Timing information based on sensor information can also be very 64 

valuable for the video analysis methodology discussed in this paper. For instance, and as 65 

presented in our work, the gate-crossing and identification of riders within a segment can 66 

assist to further enhance the information extracted from the video footage (i.e., identified 67 

detected objects on the video stream). 68 

Popular sports such as soccer, tennis, basketball or cycling are usually broadcasted 69 

on national television. Although video data cannot be directly used for performance anal- 70 

ysis, several computer vision techniques can be utilized to extract performance data for 71 

further analysis. In basketball for instance, Arbués-Sangüesa et al. [4] proposed a meth- 72 

odology to extract and track visual features of basketball players using a combination of 73 

a pre-trained pose estimation model and an additional feature extraction network. San- 74 

thosh and Kaarthick [5] performed a similar workflow but used OpenCV algorithms such 75 

as HOG-descriptors to detect and track players. Additionally, they also defined a homog- 76 

raphy matrix to map the detected locations on the video frames on a top-view represen- 77 

tation of the basketball field, allowing interesting visualizations such as heatmaps. 78 

Chakraborty and Meher [6] suggested a video-based ball detection and tracking method- 79 

ology that facilitates extensive path analysis of the ball during basketball long shots. 80 

In our rideline analysis we will adopt a video-based approach to extract the ride lines 81 

of cyclocross riders but as further explained in the discussion section of this paper, our 82 

approach might also benefit from additional sensor-based rider tracking. 83 

3. Materials and Methods 84 

The proposed methodology, shown in Figure 1, consists of several consecutive steps 85 

and ultimately produces a path that bicycle riders have followed through the defined 86 

fence. In this section we will further elaborate on each of the steps that are required to 87 

produce this path info. 88 
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Figure 1: Different steps in the video processing pipeline to produce segment path data 90 

The first step of the analysis consists of the decomposition and initial preprocessing 91 

of the incoming video source. The pipeline accepts both recorded video clips and live 92 

video data delivered by popular streaming formats such as HTTP Live Streaming (HLS) 93 

and the Newtek Network Device Interface (NDI) protocols. The video data is decomposed 94 

into frames and based on the framerate of the recorded video some frames are periodically 95 

skipped for an optimal balance between accuracy and processing time. Experiments with 96 

high-definition footage (1920x1080 pixels) at a framerate of 30 frames per second show 97 

that processing every third frame gives the best balance between pipeline detection accu- 98 

racy and processing speed. By processing every third frame the video is processed in 99 

(near) real time. For preprocessing, the frame can be cropped to leave out irrelevant back- 100 

ground information for further analysis (and further speed up processing times). Next, a 101 

rectangular fence is defined within the cropped region. The fence is defined as the region 102 

of video in which movements and behavior of riders are analyzed as illustrated by the 103 

measurement zone rectangle in Figure 2. Only detections within this region will be consid- 104 

ered in further analysis (see post processing subsection).  105 

 106 

Figure 2: Illustration of the fence principle on a video frame of a cyclocross training session. The 107 
red rectangle is the region of interest. Results of pose detection, tracking and post processing are 108 
illustrated by the yellow path within the fence. 109 

In the following two steps a combination of computer vision and machine learning 110 

algorithms will gather more information about the riders that are present in the fence. As 111 

a start, an Alphapose pose estimator [7] is run on the frame to detect the riders and their 112 

body keypoints. To track riders through the frames, Alphapose offers various pose track- 113 

ing implementations (e.g., PoseFlow, Human ReID or detector based). However, after 114 

thorough experimentation with the different trackers and its parameter configurations we 115 

were not able to achieve satisfiable results. The trackers work great on pedestrians, but on 116 

skeletons that are pedaling a bicycle the tracking often fails. The tracker can fail in two 117 
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different ways: a first being a tracking identifier swap, especially after partial occlusion of 118 

one skeleton behind the other. Another tracking failure occurs when a new tracking iden- 119 

tifier is assigned to an already seen skeleton. However, for further path analysis we decided 120 

to position the camera in such a way that it is filming the fence from a frontal but overhead 121 

camera angle. This has the advantages that the fence is more accurately representing the 122 

real-life coordinates and that skeleton swaps are less likely to occur as there is a better 123 

unobstructed view on the riders (e.g., riders will not be hidden after each other). With this 124 

extra prerequisite in mind, we implemented a more straightforward, yet purpose tailored 125 

spatiotemporally aware tracking mechanism that mostly circumvents the mentioned 126 

shortcomings of the trackers included within Alphapose. Full details of the tracking meth- 127 

odology can be found in Appendix 1, but we will briefly discuss the main working prin- 128 

ciples of the technique. The technique keeps track of the skeletons seen in the last 5 frames 129 

with its last known coordinates within the fence. When a new frame is processed, the 130 

distance matrix between the old poses center locations and the new pose centers is calcu- 131 

lated. The new pose matches with an older pose if it has the minimum distance to that old 132 

pose and the distance is smaller than 25 percent of its diagonal size of the bounding box 133 

around the new pose. Each time a new frame is processed, the poses older than 5 frames 134 

ago are also removed from the pose match dictionary. This approach works very well in 135 

cycling as cyclists travel from a starting to an end point within the fence, so the corre- 136 

sponding bounding boxes are also moving similarly through the fence over time. 137 

 138 

In the next step of the video processing pipeline, a clear distinction between each of 139 

the ridemodi a rider can adopt is made. In cyclocross, riders ride on or run with their bikes, 140 

based on the technicality and surface conditions. Technical sectors might for instance be 141 

perfectly rideable for a rider with great technical prowess but might be completely un- 142 

rideable for another less technical rider. The barriers are a great example of such a tech- 143 

nical sector. If the barriers are relatively high and are placed at a challenging part of the 144 

course (e.g., uphill or after a corner), some less technical riders will be forced to dismount 145 

their bike and run over this course feature. Monitoring these differences among riders 146 

within the video fence can be for instance very valuable in helping to understand why, 147 

how and where riders are taking a certain line and explain why one rider is slower than 148 

another. To answer the riding mode, question a neural network was trained to detect cy- 149 

clists that are either running or cycling and spectators. To train such a model a training 150 

dataset of 869 images was constructed, with 747 cyclists that are riding, 457 running, 116 151 

crashing and 1038 spectators. The dataset was split uniformly across the categories in 75% 152 

for the training data, 20% for test and 5% for validation. The data was used to train a 153 

YoloV5 model (yolov5s variant) for 100 epochs and achieved a mean Average Precision 154 

(mAP) of 68%. As can be seen in Figure 3, it is the spectator class that is degrading the 155 

overall model’s performance quite a bit as it classifies most spectators as background.  156 
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 158 

Figure 3: Confusion matrix and precision recall curve for the rider mode detector. As can be seen, 159 
the green line of spectators is performing significantly worse than the other classes. 160 

Another interesting metadata generator within the pipeline is the team (jersey) recog- 161 

nition module. The team jersey recognition should be capable of detecting to which 162 

team a rider belongs based on the team jersey they are wearing. Team jerseys usually 163 

have distinct patterns with some sponsors on them. If team jerseys wouldn’t change 164 

over the years, it might be perfectly feasible to train a state-of-the-art object recognition 165 

model that has a couple of hundreds of images for each team. However, in practice 166 

team jersey designs, sponsors and even colors usually change every year (or some- 167 

times even faster), which makes this approach rather unfeasible. To overcome this 168 

limitation, a methodology that only uses relatively few examples for each jersey class 169 

should be implemented. For this purpose, a transfer learning approach was used. In 170 

neural network transfer learning, the trained knowledge of an existing neural net- 171 

work is reused to do the classification or detection task for another unseen, but re- 172 

lated problem [8]. This is usually done by removing the last output layer of the 173 
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network and adding another one instead. All weights of the original network are 174 

frozen (i.e., are not trained any further), but the last layer’s weights are based on the 175 

(limited amount) of provided problem specific training data. For our team classifica- 176 

tion module, we trained a RESNET18 model, with its last fully connected layer re- 177 

placed by a linear layer that was retrained. In the first attempt of preparing the train- 178 

ing data, the team jerseys were rectangularly cropped from a larger image. This in- 179 

troduced a lot of background noise in the image, which had a negative impact on the 180 

trained predictor’s accuracy. This shortcoming was mostly solved by an extra model 181 

that crops the relevant body parts from an image with background information [9]. 182 

For our model’s training data, we retrieved the torso from the humanparser’s gener- 183 

ated body part segmentation output. An example of a before (with background in- 184 

formation) and after (without) can be consulted in Figure 4. This significantly im- 185 

proved the model’s capability to accurately classify teams based on their jerseys. 186 

With this approach, a model was trained on five teams (see Figure 6 for an overview 187 

of the corresponding jerseys). For each team a total of 8 images were used to train 188 

the final output layer of the RESNET18 model. The training images were prepro- 189 

cessed using a set of (random) image transformations randomly performing light 190 

condition changes, horizontal flips, slight rotations and/or cropping. The other 3 im- 191 

ages were used for testing purposes. The model achieved a 96% validation accuracy 192 

after 10 epochs of training time. The model was further validated on a number of un- 193 

seen images for each team. The confusion matrix of this extra validation data is 194 

shown in Figure 5. As could be seen, some teams are still mistaken one for another, 195 

but the provided shots are from multiple camera angles and zoom levels, so addi- 196 

tional more clever cropping might still improve the model’s prediction. 197 

 198 

Figure 4: Illustration of the cropping and masking of the torso of a cyclist. 199 
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Figure 5: Confusion matrix of team predictions on unseen validation images trained on five team 201 
jersey classes. 202 

 203 

Figure 6: Overview of the five team jerseys that were used to train the team jersey recognition 204 
model. 205 

The next link in the video processing pipeline is the check if a rider is in the fence. 206 

This is determined by the center of the bounding box (bbox) around the joints that are 207 

detected by the Alphapose detector. If the center of the rider’s bbox is within the fence’s 208 

box, the rider is considered in the fence.  209 

 210 

After the previously mentioned pipeline elements have run, the post-processing step 211 

can now be performed. The difference with the previous steps and the post processing 212 

step is that the previous steps take place on a per frame level, but the post processing hap- 213 

pens across multiple frames. In the real-time path analysis scenario, the post processing is 214 

initiated if the fence remains empty for 10 consecutive analyzed frames. In post-pro- 215 

cessing the actual paths travelled by the tracked skeletons are determined. If desired, the 216 

coordinates of the paths can also be transformed into real life coordinates using a homog- 217 

raphy perspective transformation [10]. The main challenge within this post-processing 218 

step is the handling of the re-identification of the pose tracker. A pose is re-identified if 219 

the pose tracker assigns a new tracking identifier to a pose that was already seen in a 220 

previous frame. The possible causes for re-identification can be usually reduced to two 221 

different categories. The first, is when the Alphapose estimator fails to map the skeletons 222 

for one or more consecutive frames, which causes a jump in the subsequent positions 223 

which is too high for our simple geospatial pose tracker to link it to a previous pose instance. 224 

Another culprit can be when two poses are basically overlapping each other and both 225 

identifiers are mistaken for each other. With these limitations in mind, a post processing 226 

strategy can now be implemented to search and solve the re-identifications. The strategy 227 

exploits the fact that in our fenced approach the skeletons will always travel in a consistent 228 

direction within the fence (e.g., left to right, right to left, top to bottom or bottom to top). 229 

With this added constraint, a straightforward, yet powerful geospatially aware pose path 230 

merger can be implemented. The merging process is illustrated in Figure 7 and will be 231 
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briefly discussed in the next paragraph. In summary, the merging process consists of three 232 

steps. In the first step, the paths are split based on jumps in frame numbers of the different 233 

tracks. A track is defined as a pose that was tracked over time in the fence and was as- 234 

signed a tracking identifier. The criterion to split a track is that tracks that have a non- 235 

subsequent frame sequence are split into two separate tracks. This prepares the tracks for 236 

step two of the merging process where the tracks are attempted to be merged again based 237 

on a spatiotemporal weighting function. As illustrated in Figure 7, a track has a number 238 

of match candidates that can be matched. The selected candidate is the one with minimum 239 

spatiotemporal distance and below a certain threshold that is set based on the fence’s di- 240 

mensions. In the last step, the spatiotemporally linked tracks are iteratively matched 241 

based on the index lists of frame numbers within a track. This process stops if all paths 242 

have index lists that are non-overlapping.  243 

 244 

Figure 7: A schematic overview of the three-step pose tracking merging strategy. 245 

The proposed pose tracking methodology combined with the merging strategy pro- 246 

duces a set of pose tracks that can be directly used in the following steps in the video 247 

pipeline. In this next step the pose tracks (or parts of the tracks) that are within the bound- 248 

aries of the desired fence’s coordinates are extracted. To check if a skeleton of a path is 249 

within the fence, the center of the bounding box around its joints was used. Using this 250 

approach, the tracked skeletons’ coordinates stay much more consistent and less spikey 251 

as when a joint such as the knee or foot were used.  252 

 253 

The skeleton is considered within the fence if this center coordinate is within the 254 

fences bounding box coordinates (see Figure 8). This check is performed for every frame 255 

in which the skeleton in the track was detected. A valid path in the fence is defined as a 256 

rider that is entering and exiting the defined bounding box (and has multiple detections 257 

within the fence).  258 
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Figure 8: Rider entering (id = 6) and rider exiting (id = 3) the sand pit fence (red rectangle) 260 

Once the valid paths have been detected, all information is available to create insight- 261 

ful statistics of the path a rider did follow within the fence. The extra metadata such as the 262 

rider modi and the team jersey recognition results are used to annotate the path with a 263 

major riding mode and the team probability scores of the rider. The combination of video 264 

(stream) frame rate and the start frame and end frame when the rider entered or exited 265 

the fence also allows to give an estimate of how much time the rider did spend in that 266 

zone. In summary, in the final step, the data of the tracked skeleton across different frames 267 

within the fence is brought together and summarized, which on its turn can be published. 268 

In our video pipeline the fence data is published to a REST API, allowing easy retrieval 269 

for other stakeholders within the cyclocross broadcasting world. 270 

3. Results 271 

In the previous section we introduced the full video processing pipeline. In this sec- 272 

tion we will discuss some applications and results that can be achieved with the video 273 

processing pipeline. A first application is the direct application and analysis of the riding 274 

lines within the fence. Figure 9 shows an infographic of how this data can be visualized. 275 

As mentioned in the previous section, the coordinates of the poses were first mapped on 276 

real-life coordinates to optimally represent the true shape of the fence and paths that were 277 

followed. In the rideline graph presented in Figure 9 we can see that the blue and orange 278 

rider follow a similar path on the track, but the green rider deviates from that similar path 279 

near the end of the path. This specific rider made a technical mistake in the sand, causing 280 

a deviation from the other riders’ lines. 281 



Sensors 2021, 21, x FOR PEER REVIEW 10 of 12 
 

 

 282 

Figure 9: Schematic overview of the produced fence paths of the various riders that went through 283 
the fence. Left graph is the actual ride line data (riders go through the fence from the right to the 284 
left), the central infographic image is the idea for visualization during video broadcasts. 285 

As mentioned, this raw rideline data is also published to an API, so this information 286 

could also be used by video broadcasters to directly incorporate these near-real-time stats 287 

in the live video feed (or in race summaries or recaps afterwards). This principle is shown 288 

in the infographic in Figure 9, where the ridelines of the top 5 riders are shown on top of 289 

the video broadcast. 290 

 291 

Lastly, it is also worth mentioning that the application of the introduced principles is 292 

not limited to cyclocross and other cycling disciplines only. As a side project the video 293 

processing pipeline was reused to analyze a filmed ski downhill run. The ride mode de- 294 

tector was changed by a ski pole and flag detector. The fencing module was also removed 295 

from the pipeline but was replaced by a pipeline post-processing element that looked at 296 

when the skier’s bounding box overlapped with the detected ski flags bounding boxes 297 

(see Figure 10). With this information the path the skiers took could be recreated as well 298 

as the timings of the segments between consecutive flags that were slalomed.  299 

 300 

Figure 10: Skier detected within proximity of the slalom flag. 301 

5. Conclusions 302 

In this paper we presented a video based end-to-end modular and stepwise solution for 303 

detection and analysis of cyclocross riding lines. Human poses, ride modi and team detection 304 

analyses were performed on a frame-based level. These pipeline results are merged and 305 
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post-processed by the pose tracker and were further processed into ridelines by line anal- 306 

ysis post processing. The pipeline outputs both the raw metadata output (e.g., tracked 307 

skeletons and ride modi) and the processed rideline data. As the pipeline is fully modular, 308 

pipeline elements can be added or removed as required. As an example, in sports such as 309 

cyclocross and motocross a MyLaps gate timing solution is often used. When the riders 310 

wearing a transponder ride over a measurement loop, he/she is registered, and the time 311 

of crossing is recorded on the MyLaps system. Integration of these measurement loops at 312 

the start and endpoints of the analyzed fences might not only give a conclusive answer 313 

about the team of a detected rider in video, but it will also automatically and correctly 314 

identify the rider’s identity. As a final note it is also worth mentioning that stitching mul- 315 

tiple fences that are individually analyzed can yield an even bigger region to analyze.  316 
 317 
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Appendix A 321 

1. last_id ← 0        // When a new skeleton is found it gets last id + 1 as its id 322 

tracked_skeletons ← []     // skeletons that were recently seen in video 323 

2. n_frames_in_history ← 5     324 

3.  325 

4. for frame_nr in video_frames do 326 

5.     poses ← frame_resuls[frame_nr][‘poses’] 327 

6.     pose_center_xy ← [ [x,y] for pose[‘coordinates’] in poses ] 328 

7. pose_ids, tracked_skeletons ← map_poses(pose_center_xy, tracked_skeletons) 329 

8.     tracked_skeletons ← cleanup_old_poses(tracked_skeletons) 330 

9.     //Distance between tracked and new pose skeletons (omitted for readability) 331 

10.     dist_matrix = build_distance_matrix(tracked_skeletons, pose_center_xy) 332 

11.     used_poses ← [] 333 

12.     mapped_ids ← [null] * len(poses) 334 

13.     for tracked_key in dist_matrix do 335 

14.         min_index ← index of minimum of dist_matrix[tracked_key] 336 

15.         min_distance ← value of minimum of dist_matrix[tracked_key] 337 

16.         distance_threshold ← 25% of diagonal length of the pose at min_index 338 

17. if min_index not in used_poses and min_distance < distance_threshold do 339 

18.     tracked_skeletons[tracked_key][‘last_seen’] = frame_nr 340 

19.     tracked_skeletons[tracked_key][‘coordinates’] =  341 

20. pose_center_xy[min_index] 342 

21.             append min_index to used_poses 343 

22.             mapped_ids[min_index] = tracked_skeletons[tracked_key][‘idx’] 344 

23. end if 345 

24.     end for 346 

25.     not_used_poses ← indices of poses not in used_poses 347 
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