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Abstract

Deep convolutional neural networks have recently
achieved state-of-the-art performance on a number of
image recognition benchmarks, including the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC-2012).
The winning model on the localization sub-task was a net-
work that predicts a single bounding box and a confidence
score for each object category in the image. Such a model
captures the whole-image context around the objects but
cannot handle multiple instances of the same object in the
image without naively replicating the number of outputs for
each instance. In this work, we propose a saliency-inspired
neural network model for detection, which predicts a set of
class-agnostic bounding boxes along with a single score for
each box, corresponding to its likelihood of containing any
object of interest. The model naturally handles a variable
number of instances for each class and allows for cross-
class generalization at the highest levels of the network. We
are able to obtain competitive recognition performance on
VOC2007 and ILSVRC2012, while using only the top few
predicted locations in each image and a small number of
neural network evaluations.

1. Introduction
Object detection is one of the fundamental tasks in com-

puter vision. A common paradigm to address this problem
is to train object detectors which operate on a sub-image and
apply these detectors in an exhaustive manner across all lo-
cations and scales. This paradigm was successfully used
within a discriminatively trained Deformable Part Model
(DPM) to achieve state-of-art results on detection tasks [6].

The exhaustive search through all possible locations and
scales poses a computational challenge. This challenge be-
comes even harder as the number of classes grows, since
most of the approaches train a separate detector per class.
In order to address this issue a variety of methods were
proposed, varying from detector cascades, to using seg-
mentation to suggest a small number of object hypotheses

[17, 2, 4].
In this paper, we ascribe to the latter philosophy and pro-

pose to train a detector, called “DeepMultiBox”, which gen-
erates a small number of bounding boxes as object candi-
dates. These boxes are generated by a single Deep Neural
Network (DNN) in a class agnostic manner. Our model has
several contributions. First, we define object detection as a
regression problem to the coordinates of several bounding
boxes. In addition, for each predicted box the net outputs a
confidence score of how likely this box contains an object.
This is quite different from traditional approaches, which
score features within predefined boxes, and has the advan-
tage of expressing detection of objects in a very compact
and efficient way.

The second major contribution is the loss, which trains
the bounding box predictors as part of the network training.
For each training example, we solve an assignment problem
between the current predictions and the groundtruth boxes
and update the matched box coordinates, their confidences
and the underlying features through backpropagation. In
this way, we learn a deep net tailored towards our local-
ization problem. We capitalize on the excellent representa-
tion learning abilities of DNNs, as exemplified recently in
image classification [11] and object detection settings [15],
and perform joint learning of representation and predictors.

Finally, we train our object box predictor in a class-
agnostic manner. We consider this as a scalable way to en-
able efficient detection of large number of object classes.
We show in our experiments that by only post-classifying
less than ten boxes, obtained by a single network applica-
tion, we can achieve competitive detection results. Further,
we show that our box predictor generalizes over unseen
classes and as such is flexible to be re-used within other
detection problems.

2. Previous work
The literature on object detection is vast, and in this sec-

tion we will focus on approaches exploiting class-agnostic
ideas and addressing scalability.

Many of the proposed detection approaches are based on
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part-based models [7], which more recently have achieved
impressive performance thanks to discriminative learning
and carefully crafted features [6]. These methods, however,
rely on exhaustive application of part templates over multi-
ple scales and as such are expensive. Moreover, they scale
linearly in the number of classes, which becomes a chal-
lenge for modern datasets such as ImageNet 1.

To address the former issue, Lampert et al. [12] use a
branch-and-bound strategy to avoid evaluating all potential
object locations. To address the latter issue, Song et al. [14]
use a low-dimensional part basis, shared across all object
classes. A hashing based approach for efficient part detec-
tion has shown good results as well [3].

A different line of work, closer to ours, is based on the
idea that objects can be localized without having to know
their class. Some of these approaches build on bottom-up
classless segmentation [10]. The segments, obtained in this
way, can be scored using top-down feedback [17, 2, 4]. Us-
ing the same motivation, Alexe et al. [1] use an inexpen-
sive classifier to score object hypotheses for being an ob-
ject or not and in this way reduce the number of location
for the subsequent detection steps. These approaches can
be thought of as multi-layered models, with segmentation
as first layer and a segment classification as a subsequent
layer. Despite the fact that they encode proven perceptual
principles, we will show that having deeper models which
are fully learned can lead to superior results.

Finally, we capitalize on the recent advances in Deep
Learning, most noticeably the work by Krizhevsky et
al. [11]. We extend their bounding box regression approach
for detection to the case of handling multiple objects in a
scalable manner. DNN-based regression applied to object
masks has been investigated by Szegedy et al. [15]. This
last approach achieves state-of-art detection performance on
VOC2007 but does not scale up to multiple classes due to
the cost of a single mask regression: in that setup, one needs
to execute 5 networks per class at inference time, which is
not scalable for most real-world applications.

3. Proposed approach
We aim at achieving a class-agnostic scalable object de-

tection by predicting a set of bounding boxes, which rep-
resent potential objects. More precisely, we use a Deep
Neural Network (DNN), which outputs a fixed number of
bounding boxes. In addition, it outputs a score for each box
expressing the network confidence of this box containing an
object.
Model To formalize the above idea, we encode the i-th
object box and its associated confidence as node values of
the last net layer:

1A typical deformable-parts model takes 1 CPU-sec/image/label at
inference time, thus for 1000 classes inference would take 1000 CPU-
seconds; sharing parts across class labels is an open research problem.

Bounding box: we encode the upper-left and lower-right
coordinates of each box as four node values, which can
be written as a vector li ∈ R4. These coordinates are
normalized w. r. t. image dimensions to achieve invari-
ance to absolute image size. Each normalized coordi-
nate is produced by a linear transformation of the last
hidden layer.

Confidence: the confidence score for the box containing
an object is encoded as a single node value ci ∈ [0, 1].
This value is produced through a linear transformation
of the last hidden layer followed by a sigmoid.

We can combine the bounding box locations li, i ∈
{1, . . .K}, as one linear layer. Similarly, we can treat col-
lection of all confidences ci, i ∈ {1, . . .K} as the output as
one sigmoid layer. Both these output layers are connected
to the last hidden layers.

At inference time, our algorithm produces K bound-
ing boxes. In our experiments, we use K = 100 and
K = 200. If desired, we can use the confidence scores
and non-maximum suppression to obtain a smaller number
of high-confidence boxes at inference time. These boxes are
supposed to represent objects. As such, they can be classi-
fied with a subsequent classifier to achieve object detection.
Since the number of boxes is very small, we can afford pow-
erful classifiers. In our experiments, we use second DNN
for classification [11].

Training Objective We train a DNN to predict bounding
boxes and their confidence scores for each training image
such that the highest scoring boxes match well the ground
truth object boxes for the image. Suppose that for a partic-
ular training example, M objects were labeled by bounding
boxes gj , j ∈ {1, . . . ,M}. In practice, the number of pre-
dictions K is much larger than the number of groundtruth
boxes M . Therefore, we try to optimize only the subset of
predicted boxes which match best the ground truth ones. We
optimize their locations to improve their match and maxi-
mize their confidences. At the same time we minimize the
confidences of the remaining predictions, which are deemed
not to localize the true objects well.

To achieve the above, we formulate an assignment prob-
lem for each training example. Let xij ∈ {0, 1} denote the
assignment: xij = 1 iff the i-th prediction is assigned to
j-th true object. The objective of this assignment can be
expressed as:

Fmatch(x, l) =
1

2

∑
i,j

xij ||li − gj ||22 (1)

where we use L2 distance between the normalized bound-
ing box coordinates to quantify the dissimilarity between
bounding boxes.



Additionally, we want to optimize the confidences of the
boxes according to the assignment x. Maximizing the con-
fidences of assigned predictions can be expressed as:

Fconf(x, c) = −
∑
i,j

xij log(ci)−
∑
i

(1−
∑
j

xij) log(1−ci)

(2)
In the above objective

∑
j xij = 1 iff prediction i has been

matched to a groundtruth. In that case ci is being maxi-
mized, while in the opposite case it is being minimized. A
different interpretation of the above term is achieved if we∑

j xij view as a probability of prediction i containing an
object of interest. Then, the above loss is the negative of the
entropy and thus corresponds to a max entropy loss.

The final loss objective combines the matching and con-
fidence losses:

F (x, l, c) = αFmatch(x, l) + Fconf(x, c) (3)

subject to constraints in Eq. 1. α balances the contribution
of the different loss terms.
Optimization For each training example, we solve for an
optimal assignment x∗ of predictions to true boxes by

x∗ = argmin
x
F (x, l, c) (4)

subject to xij ∈ {0, 1},
∑
i

xij = 1, (5)

where the constraints enforce an assignment solution. This
is a variant of bipartite matching, which is polynomial in
complexity. In our application the matching is very inex-
pensive – the number of labeled objects per image is less
than a dozen and in most cases only very few objects are
labeled.

Then, we optimize the network parameters via back-
propagation. For example, the first derivatives of the back-
propagation algorithm are computed w. r. t. l and c:

∂F

∂li
=

∑
j

(li − gj)x∗ij (6)

∂F

∂ci
=

∑
j x

∗
ijci

ci(1− ci)
(7)

Training Details While the loss as defined above is in
principle sufficient, three modifications make it possible to
reach better accuracy significantly faster. The first such
modification is to perform clustering of ground truth loca-
tions and find K such clusters/centroids that we can use as
priors for each of the predicted locations. Thus, the learn-
ing algorithm is encouraged to learn a residual to a prior, for
each of the predicted locations.

A second modification pertains to using these priors in
the matching process: instead of matching the N ground
truth locations with the K predictions, we find the best

match between the K priors and the ground truth. Once
the matching is done, the target confidences are computed
as before. Moreover, the location prediction loss is also
unchanged: for any matched pair of (target, prediction)
locations, the loss is defined by the difference between
the groundtruth and the coordinates that correspond to the
matched prior. We call the usage of priors for matching
prior matching and hypothesize that it enforces diversifi-
cation among the predictions, since the linear assignment
forces the model to learn a diverse set of predictions. We
have found that without prior matching, the convergence
speed and quality of our models were significantly lower.

It should be noted, that although we defined our method
in a class-agnostic way, we can apply it to predicting object
boxes for a particular class. To do this, we simply need to
train our models on bounding boxes for that class.

Further, we can predict K boxes per class. Unfortu-
nately, this model will have number of parameters grow-
ing linearly with the number of classes. Also, in a typi-
cal setting, where the number of objects for a given class
is relatively small, most of these parameters will see very
few training examples with a corresponding gradient con-
tribution. We thus argue that our two-step process – first
localize, then recognize – is a superior alternative in that
it allows leveraging data from multiple object types in the
same image using a small number of parameters.

4. Experimental results

4.1. Network Architecture and Experiment Details

The network architecture for the localization and clas-
sification models that we use is the same as the one used
by [11]. We use Adagrad for controlling the learning rate
decay, mini-batches of size 128, and parallel distributed
training with multiple identical replicas of the network,
which achieves faster convergence. As mentioned previ-
ously, we use priors in the localization loss – these are com-
puted using k-means on the training set. We also use an α
of 0.3 to balance the localization and confidence losses.

The localizer might output coordinates outside the crop
area used for the inference. The coordinates are mapped
and truncated to the final image area, at the end. Boxes are
additionally pruned using non-maximum-suppression with
a Jaccard similarity threshold of 0.5. Our second model
then classifies each bounding box as objects of interest or
“background”.

To train our localizer networks, we generated approx-
imately millions of images (10–30 million, depending on
the dataset) from the training set by applying the following
procedure to each image in the training set. For each image,
we generate the same number of square samples such that
the total number of samples is about ten million. For each
image, the samples are bucketed such that for each of the ra-



tios in the ranges of 0−5%, 5−15%, 15−50%, 50−100%,
there is an equal number of samples in which the ratio cov-
ered by the bounding boxes is in the given range.

For the experiments below we have not explored any
non-standard data generation or regularization options. In
all experiments, all hyper-parameters were selected by eval-
uating on a held out portion of the training set (10% random
choice of examples).

4.2. VOC 2007

The Pascal Visual Object Classes (VOC) Challenge [5]
is the most common benchmark for object detection algo-
rithms. It consists mainly of complex scene images in which
bounding boxes of 20 diverse object classes were labelled.

In our evaluation we focus on the 2007 edition of VOC,
for which a test set was released. We present results by
training on VOC 2012, which contains approx. 11000 im-
ages. We trained a 100 box localizer as well as a deep net
based classifier [11].

4.2.1 Training methodology

We trained the classifier on a data set comprising of

• 10 million crops overlapping some object with at least
0.5 Jaccard overlap similarity. The crops are labeled
with one of the 20 VOC object classes.

• 20 million negative crops that have at most 0.2 Jaccard
similarity with any of the object boxes. These crops
are labeled with the special “background” class label.

The architecture and the selection of hyperparameters fol-
lowed that of [11].

4.2.2 Evaluation methodology

In the first round, the localizer model is applied to the max-
imum center square crop in the image. The crop is resized
to the network input size which is 220 × 220. A single
pass through this network gives us up to hundred candi-
date boxes. After a non-maximum-suppression with over-
lap threshold 0.5, the top 10 highest scoring detections are
kept and were classified by the 21-way classifier model in
a separate passes through the network. The final detection
score is the product of the localizer score for the given box
multiplied by the score of the classifier evaluated on the
maximum square region around the crop. These scores are
passed to the evaluation and were used for computing the
precision recall curves.

4.3. Discussion

First, we analyze the performance of our localizer in iso-
lation. We present the number of detected objects, as de-
fined by the Pascal detection criterion, against the number
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Figure 1. Detection rate of class “object” vs number of bounding
boxes per image. The model, used for these results, was trained on
VOC 2012.

of produced bounding boxes. In Fig. 1 plot we show results
obtained by training on VOC2012. In addition, we present
results by using the max-center square crop of the image as
input as well as by using two scales: the max-center crop by
a second scale where we select 3× 3 windows of size 60%
of the image size.

As we can see, when using a budget of 10 bounding
boxes we can localize 45.3% of the objects with the first
model, and 48% with the second model. This shows better
performance than other reported results, such as the object-
ness algorithm achieving 42% [1]. Further, this plot shows
the importance of looking at the image at several resolu-
tions. Although our algorithm manages to get large number
of objects by using the max-center crop, we obtain an addi-
tional boost when using higher resolution image crops.

Further, we classify the produced bounding boxes by a
21-way classifier, as described above. The average preci-
sions (APs) on VOC 2007 are presented in Table 1. The
achieved mean AP is 0.29, which is quite competitive. Note
that, our running time complexity is very low – we simply
use the top 10 boxes.

Example detections and full precision recall curves are
shown in Fig. 2 and Fig. 3 respectively. It is important to
note that the visualized detections were obtained by using
only the max-centered square image crop, i. e. the full im-
age was used. Nevertheless, we manage to obtain relatively
small objects, such as the boats in row 2 and column 2, as
well as the sheep in row 3 and column 3.

4.4. ILSVRC 2012 Classification with Localization
Challenge

For this set of experiments, we used the ILSVRC 2012
classification with localization challenge dataset. This
dataset consists of 544,545 training images labeled with cat-
egories and locations of 1,000 object categories, relatively



class aero bicycle bird boat bottle bus car cat chair cow
DeepMultiBox .413 .277 .305 .176 .032 .454 .362 .535 .069 .256
3-layer model [18] .294 .558 .094 .143 .286 .440 .513 .213 .200 .193
Felz. et al. [6] .328 .568 .025 .168 .285 .397 .516 .213 .179 .185
Girshick et al. [9] .324 .577 .107 .157 .253 .513 .542 .179 .210 .240
Szegedy et al. [15] .292 .352 .194 .167 .037 .532 .502 .272 .102 .348
class table dog horse m-bike person plant sheep sofa train tv
DeepMultiBox .273 .464 .312 .297 .375 .074 .298 .211 .436 .225
3-layer model [18] .252 .125 .504 .384 .366 .151 .197 .251 .368 .393
Felz. et al. [6] .259 .088 .492 .412 .368 .146 .162 .244 .392 .391
Girshick et al. [9] .257 .116 .556 .475 .435 .145 .226 .342 .442 .413
Szegedy et al .[15] .302 .282 .466 .417 .262 .103 .328 .268 .398 .47

Table 1. Average Precision on VOC 2007 test of our method, called DeepMultiBox, and other competitive methods. DeepMultibox was
trained on VOC2012 training data, while the rest of the models were trained on VOC2007 data.

Figure 2. Sample of detection results on VOC 2007: up to 10 boxes from the class-agnostic detector are output, after non-max-suppression
with Jaccard overlap 0.5 is performed.

uniformly distributed among the classes. The validation set,
on which the performance metrics are calculated, consists
of 48,238 images.

4.4.1 Training methodology

In addition to a localization model that is identical (up to
the dataset on which it is trained on) to the VOC model, we

also train a model on the ImageNet Classification challenge
data, which will serve as the recognition model. This model
is trained in a procedure that is substantially similar to that
of [11] and is able to achieve the same results on the clas-
sification challenge validation set; note that we only train
a single model, instead of 7 – the latter brings substantial
benefits in terms of classification accuracy, but is 7× more
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Figure 3. Precision-recall curves on selected VOC classes.

expensive, which is not a negligible factor.
Inference is done as with the VOC setup: the number

of predicted locations is K = 100, which are then reduced
by Non-Max-Suppression (Jaccard overlap criterion of 0.4)
and which are post-scored by the classifier: the score is the
product of the localizer confidence for the given box mul-
tiplied by the score of the classifier evaluated on the mini-
mum square region around the crop. The final scores (de-
tection score times classification score) are then sorted in
descending order and only the top scoring score/location
pair is kept for a given class (as per the challenge evalua-
tion criterion).

In all experiments, the hyper-parameters were selected
by evaluating on a held out portion of the training set (10%
random choice of examples).

4.4.2 Evaluation methodology

The official metric of the “Classification with localization“
ILSVRC-2012 challenge is detection@5, where an algo-
rithm is only allowed to produce one box per each of the 5
labels (in other words, a model is neither penalized nor re-
warded for producing valid multiple detections of the same
class), where the detection criterion is 0.5 Jaccard overlap
with any of the ground-truth boxes (in addition to the match-
ing class label).

Table 2 contains a comparison of the proposed method,
dubbed DeepMultiBox, with classifying the ground-truth
boxes directly and with the approach of inferring one box
per class directly. The metrics reported are detection@5
and classification@5, the official metrics for the ILSVRC-
2012 challenge metrics. In the table, we vary the number of
windows at which we apply the classifier (this number rep-
resents the top windows chosen after non-max-suppression,
the ranking coming from the confidence scores). The one-
box-per-class approach is a careful re-implementation of the
winning entry of ILSVRC-2012 (the “classification with lo-

calization” challenge), with 1 network trained (instead of
7).

Table 2. Performance of Multibox (the proposed method) vs. clas-
sifying ground-truth boxes directly and predicting one box per
class

Method det@5 class@5
One-box-per-class 61.00% 79.40%
Classify GT directly 82.81% 82.81%
DeepMultiBox, top 1 window 56.65% 73.03%
DeepMultiBox, top 3 windows 58.71% 77.56%
DeepMultiBox, top 5 windows 58.94% 78.41%
DeepMultiBox, top 10 windows 59.06% 78.70%
DeepMultiBox, top 25 windows 59.04% 78.76%

We can see that the DeepMultiBox approach is quite
competitive: with 5-10 windows, it is able to perform about
as well as the competing approach. While the one-box-per-
class approach may come off as more appealing in this par-
ticular case in terms of the raw performance, it suffers from
a number of drawbacks: first, its output scales linearly with
the number of classes, for which there needs to be training
data. The multibox approach can in principle use transfer
learning to detect certain types of objects on which it has
never been specifically trained on, but which share similar-
ities with objects that it has seen2. Figure 5 explores this
hypothesis by observing what happens when one takes a lo-
calization model trained on ImageNet and applies it on the
VOC test set, and vice-versa. The figure shows a precision-
recall curve: in this case, we perform a class-agnostic de-
tection: a true positive occurs if two windows (prediction
and groundtruth) overlap by more than 0.5, independently
of their class. Interestingly, the ImageNet-trained model is
able to capture more VOC windows than vice-versa: we
hypothesize that this is due to the ImageNet class set being

2For instance, if one trains with fine-grained categories of dogs, it will
likely generalize to other kinds of breeds by itself



Figure 4. Some selected detection results on the ILSVRC-2012 classification with localization challenge validation set.

much richer than the VOC class set.
Secondly, the one-box-per-class approach does not gen-

eralize naturally to multiple instances of objects of the same
type (except via the the method presented in this work,
for instance). Figure 5 shows this too, in the comparison
between DeepMultiBox and the one-per-class approach3.
Generalizing to such a scenario is necessary for actual im-
age understanding by algorithms, thus such limitations need
to be overcome, and our method is a scalable way of doing
so. Evidence supporting this statement is shown in Figure 5
shows that the proposed method is able to generally capture
more objects more accurately that a single-box method.

5. Discussion and Conclusion
In this work, we propose a novel method for localiz-

ing objects in an image, which predicts multiple bounding
boxes at a time. The method uses a deep convolutional neu-
ral network as a base feature extraction and learning model.
It formulates a multiple box localization cost that is able to
take advantage of variable number of groundtruth locations
of interest in a given image and learn to predict such loca-
tions in unseen images.

We present results on two challenging benchmarks,
VOC2007 and ILSVRC-2012, on which the proposed
method is competitive. Moreover, the method is able to
perform well by predicting only very few locations to be
probed by a subsequent classifier. Our results show that the
DeepMultiBox approach is scalable and can even generalize

3In the case of the one-box-per-class method, non-max-suppression is
performed on the 1000 boxes using the same criterion as the DeepMulti-
Box method

across the two datasets, in terms of being able to predict lo-
cations of interest, even for categories on which it was not
trained on. Additionally, it is able to capture multiple in-
stances of objects of the same class, which is an important
feature of algorithms that aim for better image understand-
ing.

While our method is indeed competitive, there ex-
ist methods which have substantially larger computational
cost, but that can achieve better detection performance,
notably on VOC2007 and ILSVRC localization. Over-
Feat [13] efficiently slides a convolutional network at mul-
tiple locations and scales, predicting one bounding box
per class. That model takes 2 seconds/image on a GPU,
roughly 40x slower than a GPU implementation of our
model. Fig. 9 of [13] has the results of a single-scale, cen-
tered crop version of their model, the closest to what we
propose. That results in a 40% top-5 result on ILSVRC-
2012, compared to 40.94%, but with DeepMultiBox we are
able to extract multiple regions of interest in one network
evaluation.

Another method is that of [8], using selective search [16]
to propose 2000 candidate locations per image, extract top-
layer features from a ConvNet and using a hard-negative-
trained SVM to classify the locations into VOC classes. The
main differences with our approach are that this method is
200x more expensive, the authors pre-train their feature ex-
tractor on ImageNet and that they use hard negative mining
to learn a mapping from features to classes that has low false
positive ratio.

The latter two are good lessons, which we need to ex-
plore. While we showed in Fig. 1 that by predicting more



Figure 5. Class-agnostic detection on ILSVRC-2012 (left) and VOC 2007 (right).

windows we are able to capture more ground-truth bound-
ing boxes, a comparable increase in mAP on VOC2007
was not observed by us. We hypothesize that a classifi-
cation model that incorporates better hard-negative mining
and learns to better model local features, the context and de-
tector confidences jointly will likely take better advantage of
the proposed windows.

In the future, we hope to be able to fold the localization
and recognition paths into a single network, such that we
would be able to extract both location and class label infor-
mation in a single feed-forward pass through the network.
Even in its current state, the two-pass procedure (localiza-
tion network followed by categorization network) entails 5-
10 network evaluations. Importantly, this number does not
scale linearly with the number of classes to be recognized,
which still makes the proposed approach very competitive
with DPM-like approaches.

References
[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In

CVPR. IEEE, 2010.
[2] J. Carreira and C. Sminchisescu. Constrained parametric

min-cuts for automatic object segmentation. In CVPR, 2010.
[3] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-

narasimhan, and J. Yagnik. Fast, accurate detection of
100,000 object classes on a single machine. In CVPR, 2013.

[4] I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV. 2010.

[5] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303–
338, 2010.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(9):1627–1645, 2010.

[7] M. A. Fischler and R. A. Elschlager. The representation and
matching of pictorial structures. Computers, IEEE Transac-
tions on, 100(1):67–92, 1973.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2014.

[9] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester.
Discriminatively trained deformable part models, release 5.
http://people.cs.uchicago.edu/ rbg/latent-release5/.

[10] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition
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